LT1115CSW [Linear Systems]

Ultralow Noise, Low Distortion, Audio Op Amp; 超低噪声,低失真音频运算放大器
LT1115CSW
型号: LT1115CSW
厂家: Linear Systems    Linear Systems
描述:

Ultralow Noise, Low Distortion, Audio Op Amp
超低噪声,低失真音频运算放大器

运算放大器
文件: 总16页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1115  
Ultralow Noise,  
Low Distortion, Audio Op Amp  
U
FEATURES  
DESCRIPTIO  
The LT®1115 is the lowest noise audio operational ampli-  
fieravailable.Thisultralownoiseperformance(0.9nV/Hz  
at 1kHz) is combined with high slew rates (>15V/µs) and  
very low distortion specifications.  
Voltage Noise: 1.2nV/Hz Max at 1kHz  
0.9nV/Hz Typ at 1kHz  
Voltage and Current Noise 100% Tested  
Gain-Bandwidth Product: 40MHz Min  
Slew Rate: 10V/µs Min  
Voltage Gain: 2 Million Min  
The RIAA circuit shown below using the LT1115 has very  
low distortion and little deviation from ideal RIAA  
response (see graph).  
Low THD at 10kHz, A = –10, R = 600: 0.002%  
L
V
V = 7V  
RMS  
O
Low IMD, CCIF Method, AV = +10: 0.002%  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
RL = 600Ω  
V = 7V  
O
RMS  
U
APPLICATIO S  
High Quality Audio Preamplifiers  
Low Noise Microphone Preamplifiers  
Very Low Noise Instrumentation Amplifiers  
Low Noise Frequency Synthesizers  
Infrared Detector Amplifiers  
Hydrophone Amplifiers  
Low Distortion Oscillators  
U
TYPICAL APPLICATIO  
RIAA Phonograph Preamplifier (40/60db Gain)  
18V  
18V  
Measured Deviation from RIAA  
+
+
1µF  
R
1µF  
BOOST  
35V  
35V  
Response. lnput at 1kHz = 1mVRMS  
49.9  
2
3
2
7
INPUT  
+
Pre-Emphasized  
4
100Ω  
562Ω  
A1  
LT1115  
1
A2  
LT1010CT  
6
5
OUTPUT  
3900pF  
R
47.5k (MM)  
100(MC)  
1.0000  
0.80000  
0.60000  
0.40000  
IN  
C
IN  
(SELECT  
PER  
PHOTO  
CART-  
RIDGE)  
V
= ±18V  
= 25  
S
S
2N4304*  
~250Ω  
SELECT  
FOR 2mA  
R
T
R
4
3
L
°
= 25 C  
25k  
A
COM  
18V  
2mA  
1µF  
1µF  
35V  
0.20000  
0.0  
+
+
–18V  
35V  
–18V  
MEASURED  
17.8k  
210k  
499Ω  
COMPUTER  
SIMULATED  
–0.2000  
–0.4000  
–0.6000  
–0.8000  
–1.000  
+
V
+
+
330pF  
22.6Ω  
210Ω  
470µF  
35V  
COM  
15nF  
RESISTORS 1%  
*OR USE 2mA CURRENT SOURCE  
MM = MOVING MAGNET  
MC = MOVING COIL  
OPEN—MM  
CLOSED—MC  
470µF  
35V  
100  
20  
1k  
FREQUENCY (Hz)  
10k  
50k  
3900pF  
SINGLE  
POINT  
LT1115 • TA02  
V
–18V  
+
82.5k  
BOARD  
GROUND  
NOTE: BYPASS SUPPLIES WITH LOW ESR CAPS  
OTHER CAPS: HIGH QUALITY FILM  
2200µF  
16V  
LT1115 • TA01  
4.7µF  
FILM  
1115fa  
1
LT1115  
W W  
U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Operating Temperature Range ..................... 0°C to 70°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Supply Voltage ...................................................... ±22V  
Differential Input Current (Note 5) ...................... ±25mA  
Input Voltage ............................ Equal to Supply Voltage  
Output Short-Circuit Duration.......................... Indefinite  
U
PACKAGE DESCRIPTIO  
TOP VIEW  
ORDER  
ORDER  
PART NUMBER  
PART NUMBER  
NC  
NC  
1
2
3
4
5
6
7
8
16 NC  
TOP VIEW  
15  
14  
13  
12  
11  
10  
9
NC  
V
OS  
V
TRIM  
V
OS  
LT1115CN8  
LT1115CSW  
1
2
3
4
8
7
6
5
TRIM  
–IN  
TRIM  
TRIM  
–IN  
+
+
+
+
V
OUT  
OVER-  
COMP  
+IN  
OUTPUT  
OVERCOMP  
NC  
+IN  
V
V
N PACKAGE  
8-LEAD PDIP  
NC  
NC  
NC  
T
= 115°C, θ = 130°C/W  
JMAX  
JA  
SW PACKAGE  
16-LEAD PLASTIC SO  
T
MAX  
= 115°C, θ = 130°C/W  
JA  
LT1115 • POI01  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
VS = ±18V, TA = 25°C, unless otherwise noted.  
SYMBOL  
THD  
IMD  
VOS  
IOS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
%
Total Harmonic Distortion at 10kHz  
Inter-Modulation Distortion (CCIF)  
Input Offset Voltage  
A = –10, VO = 7VRMS, RL = 600  
v
< 0.002  
< 0.0002  
50  
A = 10, VO = 7VRMS, RL = 600  
%
v
(Note 2)  
VCM = 0V  
VCM = 0V  
200  
200  
µV  
Input Offset Current  
30  
nA  
IB  
Input Bias Current  
±50  
±380  
nA  
en  
Input Noise Voltage Density  
f = 10Hz  
o
1.0  
0.9  
nV/Hz  
nV/Hz  
f = 1000Hz, 100% tested  
o
1.2  
Wideband Noise  
DC to 20kHz  
120  
nVRMS  
dB  
Corresponding Voltage Level  
re 0.775V  
136  
in  
Input Noise Current Density  
(Note 3)  
f = 10Hz  
o
4.7  
1.2  
pA/Hz  
pA/Hz  
f = 1000Hz, 100% tested  
o
2.2  
Input Resistance  
Common Mode  
Differential Mode  
250  
15  
MΩ  
kΩ  
Input Capacitance  
5
pF  
V
Input Voltage Range  
±13.5  
±15.0  
1115fa  
2
LT1115  
ELECTRICAL CHARACTERISTICS  
VS = ±18V, TA = 25°C, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CMRR  
Common Mode Rejection  
Ratio  
VCM = ±13.5V  
104  
123  
dB  
PSRR  
AVOL  
Power Supply Rejection  
Ratio  
VS = ±4V to ±19V  
104  
126  
dB  
Large-Signal Voltage Gain  
RL 2k, V = ±14.5V  
2.0  
1.5  
1.0  
20  
15  
10  
V/µV  
V/µV  
V/µV  
o
RL 1k, V = ±13V  
o
RL 600, V = ±10V  
o
VOUT  
Maximum Output Voltage  
Swing  
No Load  
RL 2kΩ  
RL 600Ω  
±15.5  
±14.5  
±11.0  
±16.5  
±15.5  
±14.5  
V
V
V
SR  
Slew Rate  
AVCL = –1  
10  
40  
15  
70  
70  
8.5  
V/µs  
MHz  
GBW  
Gain-Bandwidth Product  
Open Loop 0utput Impedance  
Supply Current  
f = 20kHz (Note 4)  
o
Z
o
V = 0, I = 0  
o o  
I
11.5  
mA  
S
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VS = ±18V, unless otherwise noted.  
SYMBOL  
VOS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
75  
MAX  
UNITS  
µV  
Input Offset Voltage  
Average Input Offset Drift  
Input Offset Current  
Input Bias Current  
Input Voltage Range  
(Note 2)  
280  
VOS/T  
IOS  
0.5  
µV/°C  
nA  
VCM = 0V  
VCM = 0V  
40  
300  
IB  
±70  
±14.8  
120  
±550  
nA  
±13  
V
CMRR  
PSRR  
AVOL  
Common Mode Rejection  
Ratio  
VCM = ±13V  
100  
dB  
Power Supply Rejection  
Ratio  
VS = ±4.5V to ±18V  
100  
123  
dB  
Large-Signal Voltage Gain  
RL 2k, V = ±13V  
1.5  
1.0  
15  
10  
V/µV  
V/µV  
o
RL 1k, V = ±11V  
o
VOUT  
Maximum Output Voltage  
Swing  
No Load  
RL 2kΩ  
RL 600Ω  
±15  
±13.8  
±10  
±16.3  
±15.3  
±14.3  
V
V
V
I
Supply Current  
9.3  
13  
mA  
S
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: Gain-bandwidth product is not tested. It is guaranteed by design  
and by inference from the slew rate measurement.  
Note 2: Input Offset Voltage measurements are performed by automatic  
test equipment approximately 0.5 sec after application of power.  
Note 3: Current noise is defined and measured with balanced source  
resistors. The resultant voltage noise (after subtracting the resistor noise  
on an RMS basis) is divided by the sum of the two source resistors to  
obtain current noise.  
Note 5: The inputs are protected by back-to-back diodes. Current limiting  
resistors are not used in order to achieve low noise. If differential input  
voltage exceeds ±1.8V, the input current should be limited to 25mA.  
1115fa  
3
LT1115  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Wideband Voltage Noise  
Total Noise vs Matched Source  
Resistance  
Wideband Noise, DC to 20kHz  
(0.1Hz to Frequency Indicated)  
10  
100  
10  
V
= ±18V  
S
R
S
°
T
= 25 C  
A
R
S
+
1
AT 1kHz  
2 R NOISE ONLY  
AT 10Hz  
S
0.1  
1.0  
0.1  
V
= ±18V  
°
= 25 C  
S
A
0.5ms/DIV  
T
0.01  
100  
1k  
100k  
10k  
BANDWIDTH (Hz)  
1M  
10M  
3
MATCHED SOURCE RESISTANCE, R ()  
1
10 30  
100 300 1k 3k 10k  
S
LT1115 • TPC02  
LT1115 • TPC03  
THD + Noise vs Frequency  
(AV = –10)  
THD + Noise vs Frequency  
(AV = –100)  
THD + Noise vs Frequency  
(AV = –1000)  
0.1  
0.1  
0.010  
0.001  
0.010  
AV = 1000  
A
= –100  
= 600  
A
= 10  
= 600  
V
L
V
L
R
V
= 600  
R
V
R
V
L
= 20mV (7mV  
= 200mV (70mV  
= 2V (700mV  
IN  
P-P RMS)  
IN  
OUT  
P-P  
RMS)  
IN  
OUT  
A
V
P-P  
RMS)  
V
T
= 20V (7V  
RMS)  
V
T
= 20V (7V  
RMS)  
OUT  
A
V
P-P  
V
= 20V (7V  
RMS)  
P-P  
P-P  
°
°
= 25 C  
= 25 C  
°
T
= 25 C  
A
= ±18V  
V
= ±18V  
S
S
= ±18V  
S
0.010  
0.001  
0.001  
0.0005  
100  
1k  
FREQUENCY (Hz)  
20k  
20  
20  
100  
1k  
FREQUENCY (Hz)  
20k  
20k  
20  
100  
1k  
FREQUENCY (Hz)  
LT1115 • TPC06  
LT1115 • TPC05  
LT1115 • TPC04  
THD + Noise vs Frequency  
(AV = 100)  
THD + Noise vs Frequency  
(AV = 10)  
THD + Noise vs Frequency  
(AV = 1000)  
0.010  
0.1  
0.010  
0.001  
0.1  
A
V
V
T
= 100  
A
= 10  
A
V
V
T
= 1000  
V
V
L
V
= 200mV (700V  
R
V
= 600  
= 20mV (7mV  
IN  
P-P  
RMS)  
IN  
OUT  
= 25 C  
= 600  
P-P  
RMS)  
= 20mV (7V  
RMS)  
= 20V (7V  
RMS)  
= 2V (700mV  
OUT  
P-P  
P-P  
IN  
OUT  
A
V
P-P  
RMS)  
°
= 25 C  
= 600  
L
°
V
T
= 20V (7V  
RMS)  
A
A
L
P-P  
R
V
°
R
V
= 25 C  
= ±18V  
S
= ±18V  
= ±18V  
S
S
0.010  
0.001  
0.001  
0.0005  
0.0005  
20  
20k  
100  
1k  
FREQUENCY (Hz)  
20  
1k  
FREQUENCY (Hz)  
100  
20k  
20k  
100  
1k  
FREQUENCY (Hz)  
20  
LT1115 • TPC08  
LT1115 • TPC09  
LT1115 • TPC07  
1115fa  
4
LT1115  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
CCIF IMD Test (Twin Equal  
CCIF IMD Test (Twin Equal  
Slew Rate, Gain-Bandwidth-Product  
vs Overcompensation Capacitor  
10000  
Amplitude Tones at 13 and 14kHz)*  
Amplitude Tones at 13 and 14kHz)*  
0.1  
0.010  
0.001  
0.0001  
100  
10  
0.1  
0.010  
A
= 10  
A
= 10  
V
L
V
L
R
T
= 600  
R
T
= 10k  
°
°
= 25 C  
= 25 C  
A
A
V
= ±18V  
V
= ±18V  
S
S
1000  
GWB  
SLEW  
100  
1
0.001  
C
V
FROM PIN 5 TO PIN 6  
OC  
S
A
= ±18V  
°
T
= 25 C  
10  
10000  
0.0001  
0.1  
1000  
OVERCOMPENSATION CAPACITOR (pF)  
1
10  
100  
10m  
1
10  
0.1  
0.1  
OUTPUT AMPLITUDE (V  
10m  
1
10  
)
OUTPUT AMPLITUDE (V  
)
RMS  
RMS  
LT1115 • TPC10  
LT1115 • TPC11  
LT1115 • TPC12  
Total Noise vs Unmatched Source  
Resistance  
Current Noise Spectrum  
Voltage Noise vs Temperature  
100  
10  
1
2.0  
100  
10  
R
S
V
= ±18V  
S
1.6  
1.2  
0.8  
0.4  
AT 10Hz  
AT 1kHz  
AT 1kHz  
AT 10Hz  
TYPICAL  
R
NOISE ONLY  
S
1.0  
0.1  
1/f CORNER = 250Hz  
V
= ±18V  
°
= 25 C  
S
A
T
0.1  
0
1
10  
1k  
100  
FREQUENCY (Hz)  
10k  
3
10 30  
UNMATCHED SOURCE RESISTANCE, R ()  
100 300 1k 3k 10k  
15  
30  
TEMPERATURE (°C)  
45  
60  
75  
0
S
LT1115 • TPC14  
LT1115 • TPC15  
LT1115 • TPC13  
Output Short-Circuit Current  
vs Time  
Voltage Noise vs Supply Voltage  
Supply Current vs Temperature  
1.5  
1.25  
1.0  
10  
9
50  
40  
V
= ±18V  
T
= 25°C  
S
A
V
= ±18V  
= ±15V  
S
25°C  
V
30  
20  
10  
0
8
7
S
V
= ±5V  
S
6
5
4
10  
– 20  
30  
40  
50  
AT 1kHz  
3
2
1
0.75  
0.5  
25°C  
0
0
15  
30  
TEMPERATURE (°C)  
60  
45  
75  
2
3
0
1
±10  
±15  
0
±20  
±5  
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)  
SUPPLY VOLTAGE (V)  
LT1115 • TPC17  
LT1115 • TPC16  
LT1115 • TPC18  
*See CCIF Test Note at end of “Typical Performance Characteristics”.  
1115fa  
5
LT1115  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Voltage Gain vs Frequency  
Gain, Phase vs Frequency  
Voltage Gain vs Supply Voltage  
70  
60  
50  
70  
60  
50  
40  
30  
20  
10  
160  
140  
120  
100  
T
= 25°C  
A
PHASE  
R
= 2k  
L
100  
80  
R
= 600Ω  
40  
30  
L
10  
60  
GAIN  
20  
40  
10  
20  
0
V
T
= ±18V  
V
T
= ±18V  
S
S
°
0
°
= 25 C  
0
= 25 C  
A
A
C
= 10pF  
R
= 2k  
L
L
– 10  
100M  
10  
1
–20  
100k  
1M  
10M  
10k  
1
10 100  
0.01  
10k  
100M  
100k 1M 10M  
0.1  
1k  
FREQUENCY (Hz)  
±10  
SUPPLY VOLTAGE (V)  
±15  
0
± 20  
±5  
FREQUENCY (Hz)  
LT1115 • TPC19  
LT1115 • TPC20  
LT1115 • TPC21  
Common Mode Limit Over  
Temperature  
Voltage Gain vs Load Resistance  
Capacitance Load Handling  
+
80  
V
100  
10  
1
V
T
= ±18V  
S
–1  
–2  
–3  
–4  
°
= 25 C  
70  
A
30pF  
I
= 27mA AT 25°C  
LMAX  
V
V
= ±5V  
S
R
S
2k  
C
60  
50  
+
= ±18V  
S
L
40  
30  
20  
10  
0
A
= 1, R = 2k  
S
V
+4  
A
= 10  
= 200  
V
S
R
+3  
+2  
V
= ±5V TO ±18V  
S
A
= 100  
= 20Ω  
V
S
R
V
= ±18V  
S
A
+1  
°
T
= 25 C  
V
10  
30  
45  
0.1  
0
15  
60  
1
100  
1000  
(pF)  
75  
10  
10000  
TEMPERATURE (°C)  
CAPACITIVE LOAD,  
C
LOAD RESISTANCE (k)  
L
LT1115 • TPC23  
LT1115 • TPC22  
LT1115 • TPC24  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
Large-Signal Transient Response  
140  
160  
140  
120  
100  
80  
120  
100  
80  
NEGATIVE  
SUPPLY  
POSITIVE  
SUPPLY  
60  
60  
40  
40  
20  
0
1µs/DIVISION  
20  
0
V
= ±18V  
V
= ±18V  
S
A
S
A
AV = –1  
°
°
T
= 25 C  
T
= 25 C  
R
S = Rf = 2k  
Cf = 30pF  
0.1  
1
10 100 1k 10k 100k 1M 10M  
10  
100  
1k  
10k  
100k  
10M  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LT1115 • TPC25  
LT1115 • TPC26  
1115fa  
6
LT1115  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Output vs Frequency  
(Power Bandwidth*)  
Closed-Loop Output Impedance  
Small-Signal Transient Response  
30  
25  
20  
15  
10  
5
100  
10  
I
V
T
= 1mA  
V
T
= ±18V  
O
S
A
S
°
= ±18V  
= 25 C  
A
°
= 25 C  
R
= 2kΩ  
L
1
A
V
= 1000  
0.1  
*POWER BANDWIDTH  
SLEW RATE  
A
= 5  
V
f
=
P
πE  
OP  
= POWER BANDWIDTH  
0.01  
0.001  
f
E
P
0.2µs/DIVISION  
=
PEAK-TO-PEAK AMPLIFIER  
OUTPUT VOLTAGE  
-
P P  
AV = –1,  
0
10k  
RS = Rf = 2k  
Cf = 30pF  
10  
100  
1k  
10k  
100k  
1M  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
LT1115 • TPC29  
C
L = 80pF  
LT1115 • TPC30  
CCIF Testing  
Note: The CCIF twin-tone intermodulation test inputs two closely  
spaced equal amplitude tones to the device under test (DUT). The  
analyzer then measures the intermodulation distortion (IMD)  
produced in the DUT by measuring the difference tone equal to the  
spacing between the tones.  
FPO  
The amplitude of the lMD test input is in sinewave peak equivalent  
terms. As an example, selecting an amplitude of 1.000V will result in  
the complex IMD signal having the same 2.828V peak-to-peak  
amplitude that a 1.000V sinewave has. Clipping in a DUT will thus  
occur at the same input amplitude for THD + N and IMD modes.  
W U U  
U
APPLICATIO S I FOR ATIO  
The LT1115 is a very high performance op amp, but  
not necessarily one which is optimized for universal  
application. Because of very low voltage noise and the  
resulting high gain-bandwidth product, the device is most  
applicable to relatively high gain applications. Thus, while  
the LT1115 will provide notably superior performance to  
the 5534 in most applications, the device may require  
circuit modifications to be used at very low noise gains.  
Thepartisnotgenerallyapplicableforunitygainfollowers  
orinverters.Ingeneral,itshouldalwaysbeusedwithgood  
low impedance bypass capacitors on the supplies, low  
impedance feedback values, and minimal capacitive load-  
ing. Ground plane construction is recommended, as is a  
compact layout.  
Voltage Noise vs Current Noise  
The LT1115’s less than 1nV/Hz voltage noise matches  
that of theLT1028 andisthreetimesbetterthanthelowest  
voltage noise heretofore available (on the LT1007/1037).  
A necessary condition for such low voltage noise is  
operating the input transistors at nearly 1mA of  
collector currents, because voltage noise is inversely  
proportional to the square root of the collector current.  
Current noise, however, is directly proportional to the  
square root of the collector current. Consequently, the  
LT1115’s current noise is significantly higher than on  
most monolithic op amps.  
1115fa  
7
LT1115  
W U U  
U
APPLICATIO S I FOR ATIO  
Therefore, to realize truly low noise performance it is  
important to understand the interaction between voltage  
The plot also shows that current noise is more dominant  
at low frequencies, such as 10Hz. This is because resistor  
noise is flat with frequency, while the 1/f corner of current  
noise (e ), current noise (i ) and resistor noise (r ).  
n
n
n
noise is typically at 250Hz. At 10Hz when R > 1k, the  
eq  
Total Noise vs Source Resistance  
The total input referred noise of an op amp is given by  
current noise term will exceed the resistor noise.  
When the source resistance is unmatched, the Total Noise  
vs Unmatched Source Resistance plot should be con-  
sulted. Note that total noise is lower at source resistances  
below 1kbecause the resistor noise contribution is less.  
2
2
2 1/2  
e = [e + r + (i R ) ]  
t
n
n
n eq  
where R is the total equivalent source resistance at  
eq  
When R > 1ktotal noise is not improved, however. This  
s
the two inputs  
is because bias current cancellation is used to reduce  
input bias current. The cancellation circuitry injects two  
correlated current noise components into the two inputs.  
With matched source resistors the injected current noise  
creates a common-mode voltage noise and gets rejected  
by the amplifier. With source resistance in one input only,  
the cancellation noise is added to the amplifier’s inherent  
noise.  
and r = 4kTR = 0.13R in nV/Hz at 25°C  
n
eq  
eq  
As a numerical example, consider the total noise at 1kHz  
of the gain of 1000 amplifier shown below.  
100k  
100  
+
LT1115  
100Ω  
In summary, the LT1115 is the optimum amplifier for  
noise performance—provided that the source resistance  
is kept low. The following table depicts which op amp  
manufactured by Linear Technology should be used to  
minimize noise—as the source resistance is increased  
beyond the LT1115’s level of usefulness.  
LT1115 • AI01  
R
eq  
= 100+ 100||100k 200Ω  
r = 0.13200 = 1.84nV/Hz  
n
e = 0.85nV/Hz  
n
Best Op Amp for Lowest Total Noise vs Source Resistance  
i = 1.0pA/Hz  
SOURCE RESISTANCE  
(NOTE 1)  
BEST OP AMP  
n
AT LOW FREQ (10Hz)  
WIDEBAND (1kHz)  
2
2
2 1/2  
e = [0.85 + 1.84 + (1.0 x 2.0) ]  
= 2.04nV/Hz  
t
0 to 400Ω  
400to 4kΩ  
4kto 40kΩ  
40kto 500kΩ  
500kto 5MΩ  
> 5M  
LT1028/1115  
LT1007/1037  
LT1001*  
LT1028/1115  
LT1028/1115  
LT1007/1037  
LT1001*  
LT1012*  
LT1055  
output noise = 1000 e = 2.04µV/Hz  
t
LT1012*  
LT1012* or LT1055  
LT1055  
At very low source resistance (Req < 40) voltage noise  
dominates.AsR isincreasedresistornoisebecomesthe  
eq  
largestterm—asintheexampleabove—andtheLT1115’s  
Note 1: Source resistance is defined as matched or unmatched, e.g.,  
RS = 1kmeans: 1kat each input, or 1kat one input and zero at the  
other.  
*These op amps are best utilized in applications requiring less bandwidth  
than audio.  
voltage noise becomes negligible. As R is further  
eq  
increased, current noise becomes important. At 1kHz,  
when R is in excess of 20k, the current noise  
eq  
component is larger than the resistor noise. The Total  
Noise vs Matched Source Resistance plot in the Typical  
Performance Characteristics section, illustrates the above  
calculations.  
1115fa  
8
LT1115  
U
TYPICAL APPLICATIO S  
R1  
1k, 0.1%  
R3  
316k, 0.1%  
18V  
7
+
1µF 35V  
4.7µF  
FILM  
LOW ESR  
2
3
100  
1%  
R
30k  
1%  
P
6
INPUT  
LT1115  
OUT  
+
4
10k  
1%  
1µF 35V  
+
LOW ESR  
–18V  
NOTE: MATCH RESISTOR PAIRS  
R3  
R4  
R1  
R2  
=
R2  
1k, 0.1%  
R4  
TO ±0.1%  
316k, 0.1%  
LT1115 • TA03  
Figure 1. Balanced Transformerless Microphone Preamp  
THD + Noise vs Frequency  
(Figure 1)  
1
°
T
= 25 C  
A
L
R
= 100k  
V
V
R
= 10mV  
IN  
OUT  
RMS  
RMS  
= 2.92V  
= 150Ω  
S
0.1  
0.010  
20  
100  
1k  
FREQUENCY (Hz)  
20k  
LT1115 • TA04  
1115fa  
9
LT1115  
U
TYPICAL APPLICATIO S  
18V  
18V  
49.9  
+
+
R
1µF  
35V  
BOOST  
1µF  
35V  
3
2
7
INPUT  
+
+
V
R
L
OUTPUT  
100  
6
R1  
100Ω  
LT1010CT  
LT1115  
C1  
IN  
8
33pF  
1
4
2N4304*  
2mA  
V
RESISTORS 1% METAL FILM  
CAPACITORS – BYPASS; LOWER ESR  
OTHER: POLYESTER OR OTHER  
HIGH QUALITY FILM.  
R2  
909Ω  
–18V  
1µF  
*OR USE 2mA CURRENT SOURCE.  
35V  
1µF  
35V  
~250Ω  
+
–18V  
+
SELECT  
FOR 2mA  
33.2k  
1%  
33.2k  
1%  
100k  
18V  
7
+
1µF  
35V  
1µF  
2
6
LT1097  
4
3
+
100k  
1µF  
+
35V  
1µF  
OPTIONAL SERVO LOOP  
LOWERS OFFSET TO < 50µV  
–18V  
LT1115 • TA05  
NOTE 1: USE SINGLE POINT GROUND.  
NOTE 3: FOR BETTER NOISE PERFORMANCE AT  
SLIGHTLY LESS DRIVE CAPABILITY: R1 = 43,  
R2 = 392DELETE C1.  
NOTE 2: USE 470µF CAPACITORS AT EACH  
INCOMING SUPPLY TERMINAL (I.E. AT BOARD EDGE).  
Figure 2. Low Noise DC Accurate x 10 Buffered Line Amplifier  
THD + Noise vs Frequency  
(Figure 2)  
0.010  
°
T
= 25 C  
A
S
V
V
V
= ±18V  
= 500mV  
IN  
OUT  
RMS  
RMS  
= 5V  
R
R
= 10  
S
L
= 600Ω  
0.001  
0.0001  
20  
100  
20k  
1k  
FREQUENCY (Hz)  
LT1115 • TA07  
1115fa  
10  
LT1115  
U
TYPICAL APPLICATIO S  
100pF  
2.49k  
GAIN: 40dB  
30dB  
24.9  
75Ω  
475Ω  
OUTPUT  
TO  
RIAA  
18V  
STAGE  
0.01µF  
100Ω  
+
1µF  
1M  
2
3
7
4
35V  
6
6
LT1115  
+
INPUT  
7
3
+
1µF  
100V  
LT1097  
4
100µF  
1M  
100k  
2
+
35V  
18V  
1µF  
100V  
18V  
18V  
100µF  
18V  
RESISTORS 1% METAL FILM  
CAPACITORS—BYPASS: LOW ESR  
OTHER: HIGH QUALITY FILM  
+
35V  
1µF  
+
35V  
– 18V  
NOTE 1: USE SINGLE POINT  
GROUNDING TECHNIQUES  
LT1115 • TA06  
Figure 3. RIAA Moving Coil “Pre-Pre” Amplifier  
(40/30dB Gain Low Noise Servo’d Amplifier)  
CCIF IMD Test (Twin Tones at 13  
and 14kHz) (Figure 3)  
Noise vs Frequency (Figure 3)  
0.1  
10µ  
°
°
T
= 25 C  
T
= 25 C  
= ±18V  
= 100k  
A
S
A
V
= ±18V  
V
S
INPUT GROUNDED  
R
L
0.010  
0.001  
1µ  
100n  
10n  
0.0001  
1
20k  
10  
20  
100  
1k  
FREQUENCY (Hz)  
0.1  
OUTPUT AMPLITUDE (  
V
)
RMS  
LT1115 • TA08  
NOTE: NOISE AT 1kHz REFERRED TO INPUT ~2nV  
LT1115 • TA09  
1115fa  
11  
LT1115  
U
TYPICAL APPLICATIO S  
18V  
+
+
1µF  
35V  
470µF  
35V  
100pF  
2.49k  
RIAA NETWORK  
+
35V  
1µF  
12.1  
2
7
R1  
6081Ω  
3
2
6
7
+
LT1115  
4.7µF FILM  
499Ω  
3
MOVING COIL  
INPUT  
6
+
OUTPUT  
100k  
LT1056  
4
4
C1  
0.1645µF  
R2  
490Ω  
1µF  
100Ω  
0.01µF  
+
35V  
10k  
1µF  
C2  
0.483µF  
499Ω  
+
35V  
RESISTORS 1% METAL FILM  
CAPACITORS—BYPASS: LOW ESR  
OTHER: HIGH QUALITY FILM  
–18V  
NOTE 1: 1kHz GAIN = 53dB  
470µF  
NOTE 2: IN RIAA NETWORK VALUES SHOWN  
ARE MEASURED AND PRODUCE THE  
“DEVIATION FROM RIAA” GRAPH SHOWN.  
THE CALCULATED EXACT VALUES ARE:  
R1-6249C1-0.161µF  
+
35V  
LT1115 • TA10  
R2-504C2-0.47µF  
Figure 4. Moving Coil Passive RIAA Phonograph Pre-Amp  
Deviation from RIAA Response  
Input at 1kHz = 232µVRMS  
Pre-Emphasized (Figure 4)  
THD + Noise vs Frequency  
Input at 1kHz = 232µVRMS  
Pre-Emphasized (Figure 4)  
0.1  
0.010  
0.001  
0.50000  
0.40000  
0.30000  
0.20000  
0.10000  
V
= ±18V  
= 100k  
= 10  
= 25°C  
S
L
S
V
= ±18V  
= 100k  
= 10Ω  
S
R
R
T
R
R
L
S
A
°
A
T
= 25 C  
0.0  
0.1000  
0.2000  
0.3000  
0.4000  
0.5000  
100  
20  
1k  
20k  
1k  
100  
FREQUENCY (Hz)  
20  
20k  
FREQUENCY (Hz)  
LT1115 • TA11  
LT1115 • TA12  
1115fa  
12  
LT1115  
U
TYPICAL APPLICATIO S  
470µF  
35V  
+
18V  
2.5k  
REV. AUDIO  
TAPER  
+
+
1µF  
35V  
1µF  
35V  
49.9  
1N4002  
100pF  
22Ω  
4.99Ω  
100Ω  
+
OPTIONAL  
SINGLE-ENDED TO  
BALANCED OUTPUT  
TRANSFORMER  
V
2
3
7
2.49k  
BOOST  
100Ω  
10Ω  
IN  
6
LT1010CT  
LT1115  
4
RED  
YELLOW  
BRN  
OUT  
+
2N4304**  
V
RED  
YEL  
150Ω  
MICROPHONE  
INPUT  
~250Ω  
SELECT  
FOR 2mA  
6.19k  
2mA  
BRN  
ORANGE  
JENSEN  
JE-11-BM  
BLK  
WHT  
1µF  
470µF  
1µF  
+
35V  
+
35V  
35V  
RESISTORS 1% METAL FILM  
+
CASE  
CAPACITORS—BYPASS: LOW ESR  
OTHER: HIGH QUALITY FILM  
1N4002  
–18V  
JENSEN  
JE-16-A/B  
NOTE: USE SINGLE POINT GROUND  
18V  
7
*JENSEN NETWORK VALUES—FACTORY SELECTED.  
+
1µF  
1µF  
JE-16-A/B & JE-11-BM AVAILABLE FROM:  
JENSEN TRANSFORMERS  
10735 BURBANK BLVD.  
35V  
100k  
+
2
10k  
N. HOLLYWOOD, CA 91601  
(213) 876-0059  
OR USE 2mA CURRENT SOURCE  
6
LT1097  
4
3
**  
LT1115 • TA13  
10Ω  
1µF  
35V  
100k  
1µF  
+
–18V  
Figure 5. High Performance Transformer Coupled Microphone Pre-Amp  
Risetime of High Performance  
Transformer Coupled Microphone  
Pre-Amp (Figure 5)  
THD + Noise vs Frequency  
(Gain = 20dB) Balanced In/  
Balanced Out (Figure 5)  
Frequency Response  
(Gain = 20dB) Balanced In/  
Balanced Out (Figure 5)  
1.0000  
1
0.1  
V
V
= ±18V  
= 0.95V  
= 600Ω  
= 150Ω  
S
IN  
RMS  
R
R
0.0  
1.000  
– 2.000  
L
S
A
°
T
= 25 C  
0.010  
– 3.000  
– 4.000  
– 5.000  
V
V
= ±18V  
= 0.95V  
= 600  
= 150Ω  
S
IN  
RMS  
R
R
L
S
A
RISETIME OF PRE-AMP  
0.001  
°
T
= 25 C  
A
V = 20dB  
0.0005  
VIN = 400mV  
10  
100  
10k  
1k  
FREQUENCY (Hz)  
100k  
20  
100  
1k  
FREQUENCY (Hz)  
20k  
2kHz SQUARE WAVE MEASURED AT SINGLE-  
ENDED OUTPUT BEFORE TRANSFORMER  
LT1115 • TA16  
LT1115 • TA15  
1115fa  
13  
LT1115  
U
TYPICAL APPLICATIO S  
R1  
C1  
0.1µF FILM  
2k  
200  
15V  
C2  
0.1µF  
FILM  
1µF  
35V  
15V  
2
R
= 49.9  
BOOST  
+
1µF  
35V  
+
7
3
2
+
4
5
100Ω  
2k  
200Ω  
IN  
1
20V OUTPUT  
LT1010  
3
LT1115  
4
P-P  
R2  
15V  
+
1µF  
7
+
1µF  
1µF  
35V  
35V  
2
+
35V  
–15V  
–15V  
6
5.6k  
LT1022  
+
3
2.4k  
500Ω  
(20T)  
4.7k  
10pF  
4
–15V  
15V  
+
MOUNT,  
470µF  
1µF  
35V  
10µF  
1N4148's  
IN CLOSE  
PROXIMITY  
35V  
2.5V  
+
–15V  
1k  
LT1004's  
1.2V  
1
120k  
1µF  
f =  
–15V  
2πRC  
470µF  
WHERE R1C1 = R2C2  
MEASURED WITH  
R1 = R2 = 1.5k  
+
35V  
10k  
10k  
<5ppm DISTORTION AND NOISE  
VACTEC  
VTL 5C10  
15V  
+
AT 1kHz, 20V INTO 100Ω  
1µF  
35V  
P-P  
7
MEASUREMENT LIMITED BY RESOLUTION  
OF AUDIO PRECISION TEST SYSTEM  
100Ω  
LT1006  
ALL BYPASS CAPACITORS: LOW ESR  
FILM CAPACITORS = ASC TYPE 315  
+
4
LT1115 • TA17  
Figure 6. Ultralow THD Oscillator (Sine Wave) (< 5ppm Distortion)  
1115fa  
14  
LT1115  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
.130 ± .005  
.300 – .325  
.045 – .065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1115fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1115  
U
PACKAGE DESCRIPTIO  
SW Package  
16-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 ±.005  
.030 ±.005  
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
TYP  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 ±.005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
N/2  
8
1
2
3
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
× 45°  
(0.254 – 0.737)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S16 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
1115fa  
LW/TP 1102 1K REV A • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 1989  

相关型号:

LT1115CSW#PBF

LT1115 - Ultra-Low Noise, Low Distortion, Audio Op Amp; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1115CSW#TR

暂无描述
Linear

LT1115_1

Ultralow Noise, Low Distortion, Audio Op Amp
Linear System

LT1116

12ns, Single Supply Ground-Sensiing Comparator
Linear

LT1116C

12ns, Single Supply Ground-Sensiing Comparator
Linear

LT1116CN8

12ns, Single Supply Ground-Sensiing Comparator
Linear

LT1116CN8

COMPARATOR, 3500uV OFFSET-MAX, 16ns RESPONSE TIME, PDIP8, PLASTIC, DIP-8
ROCHESTER

LT1116CN8#PBF

LT1116 - 12ns, Single Supply Ground-Sensing Comparator; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1116CN8#TRPBF

IC COMPARATOR, 3500 uV OFFSET-MAX, 12 ns RESPONSE TIME, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8, Comparator
Linear

LT1116CS8

12ns, Single Supply Ground-Sensiing Comparator
Linear

LT1116CS8

COMPARATOR, 3500uV OFFSET-MAX, 16ns RESPONSE TIME, PDSO8, 0.150 INCH, SLIM, PLASTIC, SOP-8
ROCHESTER

LT1116CS8#TR

LT1116 - 12ns, Single Supply Ground-Sensing Comparator; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear